\qquad

7-8 Practice
 Using Exponential and Logarithmic Functions

1. How many hours will it take a culture of bacteria to increase from 20 to 2000 ? Use $k=0.614$.
2. A radioactive substance has a half-life of 32 years. Find the constant k in the decay formula for the substance.
3. Cobalt, an element used to make alloys, has several isotopes. One of these, cobalt 60 , is radioactive and has a half-life of 5.7 years. Cobalt 60 is used to trace the path of nonradioactive substances in a system. What is the value of k for cobalt 60 ?
4. Modern whales appeared 5-10 million years ago. The vertebrae of a whale discovered by paleontologists contain roughly 0.25% as much carbon-14 as they would have contained when the whale was alive. How long ago did the whale die? Use $k=0.00012$.
\qquad
\qquad PERIOD \qquad
5. The population of rabbits in an area is modeled by the growth equation $P(t)=8 e^{0.26 t}$, where P is in thousands and t is in years. How long will it take for the population to reach 25,000 ?
6. A radioactive element decays exponentially. The decay model is given by the formula $A=A_{0} e^{-0.04463 t} . A$ is the amount present after t days and A_{0} is the amount present initially. Assume you are starting with 50 g . How much of the element remains after 10 days? 30 days?
7. A population is growing continuously at a rate of 3%. If the population is now 5 million, what will it be in 17 years' time?
8. A certain bacteria is growing exponentially according to the model $y=80 e^{k t}$. Using $k=0.071$, find how many hours it will take for the bacteria reach a population of 10,000 cells?
