Logs to Exponential, Evaluating Logs, and Graphing Logs

Definition:

Logarithm - let b and y be positive numbers with $b \neq 1$. The logarithm of y with base b is denoted by $\log _{b} y$ and is defined as follows:

$$
\log _{b} y=x \quad \text { if and only if } \quad b^{x}=y
$$

\qquad form) \qquad form)

The expression $\log _{b} y$ is read as "log base b of y "
*When there is no base, the base is \qquad
Example 1.) Rewrite the logarithmic equations in exponential form.
a.) $\log _{2} 8=3$
b.) $\log _{4} 1=0$
c.) $\log _{12} 12=1$
d.) $\log _{\frac{1}{4}} 4=-1$

Example 2.) Evaluate the logarithm.
a.) $\log _{4} 64$
b.) $\log _{5} 0.2$
c.) $\log _{\frac{1}{5}} 125$
d.) $\log _{36} 6$

Definition:

\qquad relationship between exponential and logarithmic functions to graph logarithmic functions.

Example 6.) Graph the function, state the domain, state the range, and state the asymptote.
a.) $y=\log _{3} x$

D: \qquad R: \qquad A: \qquad
b.) $y=\log _{\frac{1}{2}} x$

Definition:

Translations of Logarithmic Graphs - You can graph a logarithmic function of the form $y=$ $\log _{b}(x-h)+k$ by translating the graph of the \qquad function $y=$ $\log _{b} x$.

Example 7.) Graph $y=\log _{2}(x+3)+1$. State the domain, the range, and the asymptote.

D: \qquad R : \qquad A: \qquad

