Solving Log Equations and Inequalities

Definition:

Logarithmic Equations - these are equations that involve \qquad of variable expressions

Property of Equality for Logarithmic Equations - if b, x, and y are positive numbers, $\log _{b} x=\log _{b} y$ if and only if $x=y$

Ex. If $\log _{2} x=\log _{2} 7$, then \qquad
Example 1) Solve $\log _{5}(4 x-7)=\log _{5}(x+5)$

The property of equality for exponential equations implies that if $x=y$, then you can \qquad each side and obtain the equation $b^{x}=b^{y}$. This technique can be used to \qquad some logarithmic equations.
Example 2) Solve $\log _{4}(5 x-1)=3$

Logarithmic Inequalities - an inequality that involves logarithms.
Property of Inequality for Logarithmic Functions - If $\mathrm{b}>1, \mathrm{x}>0$, and $\log _{b} x>\mathrm{y}$, then $x>b^{y}$. If $\mathrm{b}>1, \mathrm{x}>0$, and $\log _{b} x<\mathrm{y}$, then $0<x<b^{y}$.

- So if the inequality is $>$ or \geq, then that will be your answer.
- If the inequality is <or \leq, then you have to find the lower boundary because it cannot be ≤ 0.

Examples) $\log _{3} x>4$

$$
\log _{2} x<4
$$

$$
\log _{4}(x+3)>\log _{4}(2 x+1)
$$

$$
\log _{5}(2 x+1) \leq \log _{5}(x+4)
$$

$$
\log _{7}(2 x+8)>\log _{7}(x+5)
$$

$$
\log _{3}(7 x-6)<\log _{3}(4 x+9)
$$

